Lineare Algebra II

Lernform Kürzel Gruppengröße Aufwand Kontaktzeit LP Abschluss
Vorlesung -- k.A. 60 (4 SWS) 60 2 PL: Klausur oder mündliche Prüfung
Übung -- k.A. 30 (2 SWS) 30 1 --
Selbststudium 135 - 4,5 -
Summe - - 225 90 7,5 -
Modulbeauftragte(r): Neidhardt
Sprache: Deutsch
Turnus: jedes Semester
Standort: RAC
Lehrende: Brück, Dellen, Jaekel, Kinder, Kremer, Kschischo, Neidhardt, Wolf
Zwingende Voraussetzungen: keine
Inhaltliche Voraussetzungen: Lineare Algebra I, Analysis I

Lernziele und Kompetenzen

Zentrales Thema der Veranstaltung ist das Studium von Endomorphismen und Bilinearformen auf endlich-dimensionalen Vektorräumen. Studierende erweitern ihr Methodenwissen im Rahmen der Determinanten- und Eigenwertberechnung sowie der Basistransformation, sie vertiefen ihre geometrische Anschauung anhand der Konzepte Eigenvektoren, Normen, Metriken und Orthogonalität. Ihr Abstraktionsvermögen schulen sie anhand der Klassifikation von Endomorphismen und Bilinearformen und des Begriffs einer Äquivalenzrelation.

Vorlesungsinhalt

Determinanten, Cramersche Regel, Eigenwerte, Eigenvektoren, Basistransformation von Endomorphismen, Trigonalisierung, Diagonalisierung, Jordan-Normalform, Bilinearformen, Skalarprodukte, Normen, Metrische Vektorräume, selbstadjungierte und orthogonale Endomorphismen, Spektralsatz, Basistransformation von Bilinearformen, Singulärwertzerlegung, Äquivalenzrelationen, Quotientenvektorräume, Isomorphiesätze.

Literatur

  • T. Bröcker, Lineare Algebra und analytische Geometrie, Birkhäuser, 2004
  • G. Fischer, Lineare Algebra, Vieweg, 2005
  • S.Lang, Linear Algebra, Springer, 1991